
MA 3046 - Matrix Analysis
Laboratory Number 8

Iterative Improvement and Numerical Accuracy

As an algorithm for solving the system of linear equations

Ax = b , A ∈ Cum×m (1)

Gaussian elimination has numerous attractive features. First, it’s simple, easily under-
stood and easily implemented, especially for the hand calculations required in introductory
courses. In addition, from a realistic computational standpoint, it’s very efficient, in terms
of both space requirements and computational complexity. Furthermore, it is very attrac-
tive, both analytically and computationally inasmuch as it can be viewed as equivalent to
factoring the matrix A into a product of two simpler matrices, i.e.

A = LU (2)

where L is lower triangular, and U is upper triangular. Moreover, even incorporating
row interchanges (partial pivoting) as a strategy to minimize error growth produces only
a minor and almost equally simple to obtain variant of the factorization, i.e.

PA = LU (3)

where P is a permutation matrix. Finally, once we have this factorization in hand, then
solving (1) simply requires solving the two equations

L z = Pb

Ux = z
(4)

Therefore, since each of the systems in (4) is already triangular, each of these two equations
can actually be solved in about n2 flops, with no need for elimination - a cost negligible
when dealing with systems of any real size compared to the approximately 2

3n
3 flops

required for elimination on the original matrix A. (Also, multiplication by P is in fact
only a rearrangement of subscripts, not a computation!) Unfortunately, this savings is not
available the first time we need to solve the system for a particular right-hand side, since
we need to generate the P, L and U factors in the first place, and that costs as much
as elimination, since it is, in fact, just elimination. However, in applications we commonly
need to solve the same basic problem, i.e. the same matrix A, but with a number of
different right-hand sides, i.e. we need to solve

Ax(k) = b(k) , k = 1, 2, . . .

For such systems, if we utilize the PLU decomposition, we must pay the full 23n
3 cost only

once, i.e. only for k = 1. Then, if we simply save P, L and U, all subsequent solutions
cost only 2n2, i.e. they are essentially free.

125

Hopefully though, by now in this course, we recognize that computational efficiency
is not the sole criterion by which we must evaluate algorithms, and we are have learned to
view all theoretical claims from an at least slightly jaundiced viewpoint of how well they
actually play out when implemented for real matrices, on real computers using floating-
point arithmetic. In addition, we have also already seen that the primary characteristic
which separates “good” from “bad” algorithms as far as accuracy is concerned is backward
stability. For the PA = LU factorization, backward stability would mean that

k P̃A− L̃Ũ k
kA k = O (²machine)

where the tildes denote the computed solutions using finite-precision arithmetic. Unfortu-
nately, the best result we can show is that

k P̃A− L̃Ũ k
kA k = O (ρ ²machine) (6)

where the constant ρ is called the growth factor. Even more unfortunately, the best we
can also show for ρ is

ρ ≤ 2m−1

and m does not need to be very large before ρ²machine = O(1), i.e. before, for all practical
purposes, we lose backward stability on any realistic machine. Fortunately, matrices having
actual growth factors this large exist (at least so far) only in pathological mathematical
examples, and most actual matrices seem to have growth factors satisfying ρ ≤ √m. (But
we may only have been lucky so far!) Finally, even for matrices for which the growth
factor is “normal,” it is still possible that A is ill-conditioned. In this case, no algorithm
can be expected to accurately solve the system. Therefore, as a practical matter, since
Gaussian elimination and the PA = LU factorization may in fact fail to accurately solve
some problems, and since we frequently don’t know ahead of time whether a system we’re
solving is “difficult” or not, we need to look for fairly inexpensive tests which will tell us
at least whether a solution we’ve just computed is any good.

Again, here we are in luck. There are a couple of reasons for this. First of all, we
already have developed a fundamental relationship, which we have previously discussed
both in class and in a previous laboratory, that establishes the relationship between the
error, i.e. the difference between the actual (x) and computed (x̃) solutions,

e = x− x̃ ,

and the residual,
r = b−Ax̃ = Ae

to be k e k
kx k ≤ κ(A) · k r kkb k (7)

126

where κ(A) denotes the condition number (≡ kA k·kA−1 k) of A in any legitimate norm.
This relationship allows us to take advantage of the fact that the residual is easily and
cheaply computed, once we have found x̃. Moreover, (7) clearly implies that a relatively
“large” residuals virtually guarantee poor solutions. Unfortunately, as we have already
seen, “small” residuals do not necessary imply correspondingly small errors. So what do
we do when the residual is small?

The PLU decomposition can play a fundamental role in answering this last question,
i.e. in determining the actual accuracy of computed solutions because, as we have seen,
both the original solution and the error satisfy a system of equations with exactly the same
left-hand side, i.e.:

Ax = b

Ae = r
(8)

Therefore, one intriguing “fallout” of the fundamental inequality (7) is that, in general,
we should expect to see similar relative errors in both our computed solution (x̃) and in
a computed estimate to the error (ẽ) based on solving the second equations in(8). Put
somewhat differently, if x̃ has at least the correct order of magnitude and one significant
digit of accuracy, then solving the second equation should produce an error estimate of the
correct order of magnitude and at least one significant digit of accuracy. Therefore, x̃+ ẽ
should have not only the correct order of magnitude, but at lease two significant digits
of accuracy. Moreover, since both equations in (8) have the same left-hand sides, then,
provided we solved the first using the PA = LU decomposition, then solving the second
for ẽ is effectively free!

This can be extended into the so-called iterative improvement algorithm:

Starting with the original computed solution, x̃(0)

Compute : r(n) = b−A x̃(n) ,

Solve : L z(n) = Pr(n)

U e(n) = z(n)

Update the solution :

x̃(n+1) = x̃(n) + ẽ(n) ,

There is one major caveat in this approach. This method only works if the residuals are
computed accurately. Since, a small residual can arise only if significant cancellation occurs
when we subtract Ax̃ from b, then to ensure accuracy, the residuals must be computed:

• In double precision, and
• Using the original matrix A, not LU

and repeating the process until either convergence is observed, or appears not possible.

We shall test this algorithm using several pre-written MATLAB function and script
m-files that incorporate the (misnamed) chop() command. The specific ones we shall use

127

function [r] = calc resid chop(a , b , x , NDIGITS)
%
if (exist(’NDIGITS’) = 1)

error([’ NDIGITS must be assigned a value’, ...
’ prior to calling calc resid’])

end
%
rowsA = size(a, 1) ;
%
A = chop(a , NDIGITS) ;
B = chop(b , NDIGITS) ;
X = chop(x , NDIGITS) ;
%

for i = 1 : rowsA
S(i) = chop(sum(chop(A(i , :).*X’ , NDIGITS)) , NDIGITS) ;

end
%
r = chop(B - S’ , NDIGITS) ;
return

Figure 8.1 - Partial Listing of Program calc resid chop.m

include fpsolve chop.m, which we used earlier, and which uses the results of also earlier-
used lupp chop.m, and some other previously distributed programs to simulate thePA =
LU solution of given system in a simulated, low-precision machine; calc resid.m (Fig-
ure 8.1), which simulates the calculation of a double-precision residual in a low-precision
machine; and itimp.m (Figure 8.2), which simulates the iterative improvement process in
a low-precision machine.

We would, however, be remiss if we did not mention before closing another variant of
the fundamental inequality (7), which expresses the sensitivity of solutions to perturbations
in the data. Specifically, if b is changed by a small amount, say δb, then we expect some
resulting in the solution, say δx, where now

A (x+ δx) = b+ δb

(Note by basic matrix rules then, A (δx) = δb.) However, we can also show that:

k δx k
kx k ≤ κ(A) · k δb kkb k (9)

128

%
r = calc resid chop(A , b, x , 2*NDIGITS) ;

%
z = fwd solve chop(L , P*r) ;
e = bwd solve chop(U , z) ;

%
niter = niter + 1 ;

%
x = chop(x + e, NDIGITS) ;
data = [data ; niter x’] ;

Figure 8.2 - Partial Listing of Program itimp.m

and this may have serious repercussions, because while we may reasonably expect that
k r k/kb k would not be too far above the order of magnitude of machine precision, no
such presumption can exist concerning k δb k/kb k, at least not in the world of engineering!
Moreover, we can also show that the change in solution due to perturbations of the matrix
satisfies a similiar equation,

k δx k
kx k ≤ κ(A) · k δA kkA k (10)

Taken together, these last two equations imply very strongly that simply because iterative
improvement can accurately solving a fairly ill-conditioned problem may not be of much
comfort, since, given component specifications, etc., that improved solution represent al-
most certainly only the accurate solution to the wrong problem! And if the problem is
ill-conditioned, the small errors in A and b introduced by inexact components, etc.,
may mean the true solution to the real-world problem is a long way from the true solution
to the mathematical problem we input to the computer.

We shall conclude this laboratory with a demonstration of this last property as well.

129

[This Page Intentionally Left Blank]

130

Name:

MA 3046 - Matrix Analysis
Laboratory Number 8

Iterative Improvement and Numerical Accuracy

1. Login to your workstation and start MATLAB. Then, using any web browser, link to
the course laboratories home page and download the programs:

calc resid chop.m and itimp.m

to your working space. Also make sure you still have the programs:

lupp chop.m, fpsolve chop.m, fwd solve chop.m, and bwd solve chop.m

plus the data file lu methods.mat, used in earlier laboratories, are available in your work
space.

2. Next, load the data file lu methods.mat, then rename the matrixA2 and the vector b2
loaded there to A and b, respectively. Finally, clear A1, A2, b1 and b2 from memory,
and check that you still have:

A =

 4.01 5.90 5.18
−1.39 −2.31 −1.70
7.56 12.0 9.42

 and b =

 16.4−5.20
29.1

respectively. (Note the capital is essential here!)

3. Obtain the solution of Ax = b for the matrix and vector in part 2 above problems
using the MATLAB command A\b.

xtrue =

131

4. Give the commands:

global NDIGITS

NDIGITS = 5

What is “machine precision” with this value of NDIGITS?

Now solve the system, using the fpsolve chop m-file.

x̃5 =

Compare this answer to the one you computed in parts 3. How many correct digits does
this solution appear to have? What, if anything, does that suggest?

5. Now, using full MATLAB precision, compute the residual

r = b−A x̃5 =

and the quantity
k r k
kb k

(You may do this either by hand, or using any of the MATLAB norm(· ,) commands.)
How well does this value agree with the theory discussed in class?

132

6. Now give the command

NDIGITS=3 .

Then resolve the system again, using fpsolve chop,

x̃(0) =

Does what happens now seem consistent with the theory discussed in class? (Explain
briefly.)

7. Again, using full MATLAB precision, compute the (new) residual

r(0) = b−A x̃(0) =

and the quantity
k r(0) k
kb k

Does this value still correspond to the theory discussed in class?

133

8. Make sure that the value ofNDIGITS is still set to three, and also rerun fpsolve chop
again to make sure x̃3 has not changed from part 6.

9. Study the MATLAB m-file itimp.m, which performs a single iteration of iterative
improvement. (Note that the function of the semi-colons is to “turn off” the printed
output of the values of some of the commands.)

10. Run a single iteration of itimp.m once and record the results:

Solution:

r(0) =

 , ẽ(0) =

 , x̃(1) =

What are the values of:

a.
kr(0)k
kbk

b.
kẽ(0)k
kx̃(0)k

Are these values reasonable? Explain?

134

11. Repeatedly issue the command itimp.m until you feel the process has converged
(based upon the behavior of either ẽ(n) or x̃(n).

Solution:

x̃ =

 ; number of iterations

How well does the converged solution compare to the “exact” solution obtained in part 3?
Should that have been expected?

12. Study program calc resid chop.m until you feel you understand what it’s doing.
Then edit itimp.m and change the statement:

calc resid chop(A , b , x , 2*NDIGITS)

to

calc resid chop(A , b , x , NDIGITS)

What effect should this have?

135

13. Be sure you have saved the changes you made just above. Then repeat parts 8-11, and
repeat the iterative improvement at least ten times, recording the last three values of x̃.

Solution:

x̃(n) =

 , x̃(n+1) =

 , x̃(n+2) =

Do these values appear to be converging? If not, why not?

14. Edit itimp.m to now change the statement:

calc resid chop(A , b , x , NDIGITS)

to

calc resid chop(inv(P)*L*U , b , x , 2*NDIGITS)

What effect should this have?

136

15. After making sure you have saved these latest changes, repeat part 8-11. Again try
iterative improvement at least ten times, and recording the last three values of x̃.

Solution:

x̃(n) =

 , x̃(n+1) =

 , x̃(n+2) =

Do these values appear to be converging? If not, why not? If they do appear to be
converging, how well does the converged solution now compare to the “exact” solution
obtained in part 3? Should that have been expected?

16. Replace the value of b(3) with 29.2, and solve the system again using the normal
MATLAB backslash (A\b) function.

x̃ =

Considering that the normal MATLAB backslash command works in full (i.e. double)
precision does this answer seem consistent with theory when compared to the answer to
part 3? (Explain briefly!)

137

